get only dataframe which one column values length is greater than 0
To filter a DataFrame such that only the rows where the length of the string in a specific column is greater than 0 are returned, you can use the .str.len() method combined with a boolean indexing in pandas. Here's an example demonstrating how to do this:
Suppose you have a DataFrame named df with a column named 'ColumnA', and you want to filter out all rows where the length of the string in 'ColumnA' is greater than 0:
import pandas as pd
# Sample DataFrame
data = {
'ColumnA': ['text', '', 'more text', '', 'even more text'],
'ColumnB': [1, 2, 3, 4, 5]
}
df = pd.DataFrame(data)
# Filter the DataFrame
filtered_df = df[df['ColumnA'].str.len() > 0]
print(filtered_df)
This code snippet will create a DataFrame that only includes the rows where 'ColumnA' contains a string with length greater than 0, effectively excluding rows where 'ColumnA' is an empty string.
How to show all rows in pandas?
To display all rows in a pandas DataFrame, you can adjust the display settings using pd.set_option(). Specifically, you can set the "display.max_rows" option to None or a sufficiently high number to ensure that all rows are displayed when you print a DataFrame.
import pandas as pd
# Assuming df is your DataFrame
# Set option to display all rows
pd.set_option('display.max_rows', None)
# Now, when you print the DataFrame, all rows will be displayed
print(df)
# Reset display options to default
pd.reset_option('display.max_rows')