10. Add ChatMessageHistory to RunnableWithMessageHistory
Chain creation method to remember previous conversations
# API KEY A configuration file for managing environment variables
from dotenv import load_dotenv
# API KEY load information
load_dotenv()True# LangSmith Set up tracking. https://smith.langchain.com
# !pip install langchain-teddynote
from langchain_teddynote import logging
# Enter a project name.
logging.langsmith("CH05-Memory") Start tracking LangSmith.
[Project name]
CH05-Memory Multi-turn Chain to remember previous conversations
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
# Prompt definition
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"you are Question-Answering This is a chatbot. Please provide answers to the questions given.",
),
# For conversation records key person chat_history Please use it without any changes if possible!
MessagesPlaceholder(variable_name="chat_history"),
("human", "#Question:\n{question}"), # Use user input as a variable
]
)
# llm generation
llm = ChatOpenAI(model_name="gpt-4o")
# common Chain generation
chain = prompt | llm | StrOutputParser()
Create a chain that records the conversation ( chain_with_history )
Run the first question
Then run the question
Below session_id If this is different, a new session is created.
Last updated